PRODUCT DESCRIPTION

The YRM2.DIODE is a redundancy module, which can be used to build 1+1 and N+1 redundant systems. It is equipped with two input channels, which can be connected to power supplies with up to 10A output current and one output, which can carry nominal currents up to 20A. The module is suitable for power supplies with constant current overload behavior as well as any kind of “Hiccup” overload behavior.

The YRM2.DIODE has a monitoring circuit included and is the perfect solution when the power supply has no DC-OK function. Two LEDs and two relay contacts signal when one of the two DC-input voltages is not in range due to a non-functioning or disconnected power supply.

In addition to the YRM2.DIODE is the YR2.DIODE which has no monitoring circuitry included. This is the perfect fit when the power supply itself is already equipped with a DC-OK signal (e.g.: DIMENSION Q-Series).

Large screw terminals allow an easy installation and a huge international approval package for a variety of applications makes this unit suitable for nearly every situation.

SHORT-FORM DATA

Input voltage	DC 24-48V ±25%
Input voltage range	18-60Vdc
Input current	2x 0-10A 2x 0-16A
Output current	0-20A 0-32A 25A
Input to output voltage drop	typ. 0.78V typ. 0.85V typ. 8.8W typ. 9.5W typ. 18W
Power losses	typ. 1.0W typ. 0.85V typ. 9.5W typ. 0.85V typ. 18W
Temperature range	-40°C to +70°C
Derating	0.5A/°C
Dimensions	32x124x117mm
Weight	350g / 0.77lb

ORDER NUMBERS

<table>
<thead>
<tr>
<th>Module</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy Module</td>
<td>YRM2.DIODE</td>
</tr>
<tr>
<td>Accessory</td>
<td>ZM1.WALL</td>
</tr>
<tr>
<td></td>
<td>ZM11.SIDE</td>
</tr>
</tbody>
</table>

MAIN APPROVALS

For details and the complete approval list, see chapter 15.

UL 508 UL 60950-1 Class I Div 2
ATEX IECEx
DNV.com/AF Marine

Jul. 2021 / Rev. 1.6 DS-YRM2.DIODE-EN
All parameters are specified at 24V, 20A output current, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intended Use</td>
<td>3</td>
</tr>
<tr>
<td>2. Installation Instructions</td>
<td>3</td>
</tr>
<tr>
<td>3. Input and Output Characteristics</td>
<td>5</td>
</tr>
<tr>
<td>4. Power Losses</td>
<td>6</td>
</tr>
<tr>
<td>5. Alarm Contacts</td>
<td>6</td>
</tr>
<tr>
<td>6. Lifetime Expectancy and MTBF</td>
<td>7</td>
</tr>
<tr>
<td>7. Terminals and Wiring</td>
<td>8</td>
</tr>
<tr>
<td>8. Functional Diagram</td>
<td>9</td>
</tr>
<tr>
<td>9. Front Side and User Elements</td>
<td>9</td>
</tr>
<tr>
<td>10. EMC</td>
<td>10</td>
</tr>
<tr>
<td>11. Environment</td>
<td>11</td>
</tr>
<tr>
<td>12. Protection Features</td>
<td>12</td>
</tr>
<tr>
<td>13. Safety Features</td>
<td>12</td>
</tr>
<tr>
<td>14. Dielectric Strength</td>
<td>12</td>
</tr>
<tr>
<td>15. Approved, Fulfilled or Tested Standards</td>
<td>13</td>
</tr>
<tr>
<td>16. Regulatory Product Compliance</td>
<td>14</td>
</tr>
<tr>
<td>17. Physical Dimensions and Weight</td>
<td>15</td>
</tr>
<tr>
<td>18. Accessories</td>
<td>16</td>
</tr>
<tr>
<td>18.1. ZM1.WALL - Wall mounting bracket</td>
<td>16</td>
</tr>
<tr>
<td>18.2. ZM11.SIDE - Side mounting bracket</td>
<td>16</td>
</tr>
<tr>
<td>19. Application Notes</td>
<td>17</td>
</tr>
<tr>
<td>19.1. Recommendations for Redundancy</td>
<td>17</td>
</tr>
<tr>
<td>19.2. Inductive and Capacitive Loads</td>
<td>17</td>
</tr>
<tr>
<td>19.3. Example: 1+1 Redundancy up to 10A</td>
<td>17</td>
</tr>
<tr>
<td>19.4. Example: N+1 Redundancy up to 30A</td>
<td>18</td>
</tr>
<tr>
<td>19.5. Example: Battery Back-up</td>
<td>18</td>
</tr>
<tr>
<td>19.6. Example: Redundancy for Controls</td>
<td>19</td>
</tr>
<tr>
<td>19.7. Example: Decoupling of Branches</td>
<td>20</td>
</tr>
<tr>
<td>19.8. Use in a Tightly Sealed Enclosure</td>
<td>20</td>
</tr>
<tr>
<td>19.9. Mounting Orientations</td>
<td>21</td>
</tr>
</tbody>
</table>

The information presented in this document is believed to be accurate and reliable and may change without notice. No part of this document may be reproduced or utilized in any form without permission in writing from the publisher.

TERMINOLOGY AND ABBREVIATIONS

PE and symbol
PE is the abbreviation for Protective Earth and has the same meaning as the symbol ⌀.

Earth, Ground
This document uses the term “earth” which is the same as the U.S. term “ground”.

t.b.d.
To be defined, value or description will follow later.

DC 24V
A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±15%) included.

E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)

24Vdc
A figure with the unit (Vdc) at the end is a momentary figure without any additional tolerances included.

may
A key word indicating flexibility of choice with no implied preference

shall
A key word indicating a mandatory requirement

should
A key word indicating flexibility of choice with a strongly preferred implementation

1+1 Redundancy
Use of two identical power supplies in parallel to provide continued operation following most failures in a single power supply. The two power supply outputs should be isolated from each other by utilizing diodes or other switching arrangements.

E.g. two 10A power supplies are needed to achieve a 10A redundant system.

N+1 Redundancy
Use of three or more identical power supplies in parallel to provide continued operation following most failures in a single power supply. All power supply outputs should be isolated from each other by utilizing diodes or other switching arrangements.

E.g.: To achieve a 40A redundant system, five 10A power supplies are needed in a N+1 redundant system.

Jul. 2021 / Rev. 1.6 DS-YRM2.DIODE-EN
All parameters are specified at 24V, 20A output current, 25°C ambient and after a 5 minutes run-in time unless otherwise noted

www.pulspower.com Phone +49 89 9278 0 Germany
1. INTENDED USE

This device is designed for installation in an enclosure and is intended for commercial use, such as in industrial control, process control, monitoring and measurement equipment or the like. Do not use this device in equipment where malfunction may cause severe personal injury or threaten human life.

The redundancy module can be used with any type of power supply as long as the maximum output current ratings are not exceeded. It is suitable for power supplies with continuous overload current as well as any kind of intermittent (Hiccup) overload behavior.

2. INSTALLATION INSTRUCTIONS

WARNING Risk of electrical shock, fire, personal injury or death.
- Turn power off before working on the device and protect against inadvertent re-powering.
- Do not open, modify or repair the device.
- Use caution to prevent any foreign objects from entering into the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surface may cause burns.

Obey the following installation instructions:
This device may only be installed and put into operation by qualified personnel.
This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect.
If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection.
Install the device in an enclosure providing protection against electrical, mechanical and fire hazards.
Do not ground or earth the positive output pole which could prevent redundancy in case of a ground failure. Ground the negative output pole, when needed.
Use only power supplies with a negligible output ripple voltage in the low frequency range between 50Hz and 10kHz when used in marine applications according to the GL regulations.
Install the device onto a DIN rail according to EN 60715 with the input terminals on the top of the device. Other mounting orientations require a reduction in output current.
Make sure that the wiring is correct by following all local and national codes. Use appropriate copper cables that are designed for a minimum operating temperature of 60°C for ambient temperatures up to +45°C, 75°C for ambient temperatures up to +60°C and 90°C for ambient temperatures up to +70°C. Ensure that all strands of a stranded wire enter the terminal connection.
Unused screw terminals should be securely tightened.
The device is designed for pollution degree 2 areas in controlled environments. No condensation or frost is allowed.
The enclosure of the device provides a degree of protection of IP20.
The input must be powered from a PELV or SELV source or an “Isolated Secondary Circuit” in order to maintain a SELV or PELV output.
Check correct input polarity. The device will not operate when input voltage is reversed.
The device is designed as “Class of Protection III” equipment according to IEC 61140.
A PE (ground) connection is not required. However, connecting the chassis ground terminal to ground can be beneficial to gain a high EMI immunity.
The device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid!
The device is designed for altitudes up to 6000m (19685ft). See additional requirements in the product datasheet for use above 2000m (6560ft).
Keep the following minimum installation clearances: 40mm on top, 20mm on the bottom, 5mm left and right side.
Increase the 5mm to 15mm in case the adjacent device is a heat source. When the device is permanently loaded with
less than 50%, the 5mm can be reduced to zero.
The maximum surrounding air temperature is +70°C (+158°F). The operational temperature is the same as the ambient
or surrounding air temperature and is defined 2cm below the device.
The device is designed to operate in areas between 5% and 95% relative humidity.

Installation Instructions for Hazardous Location Areas
The device is suitable for use in Class I Division 2 Groups A, B, C, D locations and for use in Group II Category 3 (Zone 2)
environments.
Hazardous Location classification: ATEX: EPS 11 ATEX 1 312 X, II 3G EX ec nC IIC T4 Gc

WARNING EXPLOSION HAZARDS!
Substitution of components may impair suitability for this environment.
Do not disconnect the device unless power has been switched off or the area is known to be non-hazardous.
A suitable enclosure must be provided for the end product which has a minimum protection of IP54 and fulfils the
requirements of the EN 60079-0.
3. INPUT AND OUTPUT CHARACTERISTICS

Number of inputs: 2
Number of outputs: 1
Input voltage: nom. DC 24-48V ±25%
 The input circuitry must meet the SELV requirements stipulated by IEC/EN/UL 60950-1.
Input voltage range: 18-60Vdc
Voltage drop, input to output:
 typ. 0.78V at 2x5A, see Fig. 3-1
 typ. 0.85V at 1x10A, see Fig. 3-2
 typ. 0.85V at 2x10A, see Fig. 3-1
Input current:
 nom. 2x 0-10A continuous
 nom. 1x 0-20A continuous, see note 1
 nom. 2x 10-16A for up to 5 seconds
Peak input current: max. 150A for maximal 10ms per input
Output current:
 nom. 20A continuous
 nom. 20-32A for up to 5 seconds
 max. 25A at continuous overload or short circuit, see note 2
Reverse current: max. 2mA per input, -40°C to +60°C
Reverse voltage: max. 200Vdc voltage applied to the output, continuously allowed

Note 1: Each input can be loaded up to 20A. At currents above 10A, the other input should not be loaded. It is preferable to parallel the two inputs in order to minimize the power loss in such cases.
Note 2: Ensure that the continuous output current does not exceed 25A. Check the short-circuit current of the power sources and if the power source can deliver more than 25A together, use an appropriate fuse on the output.

Fig. 3-1 Input to output voltage drop when both inputs draw current
(typical 1+1 redundant case, when the output voltages of the two units are equal or set into “parallel use” mode)

Fig. 3-2 Input to output voltage drop when only one input draws current

Jul. 2021 / Rev. 1.6 DS-YRM2.DIODE-EN
All parameters are specified at 24V, 20A output current, 25°C ambient and after a 5 minutes run-in time unless otherwise noted
4. Power Losses

DC 24V

<table>
<thead>
<tr>
<th>Power losses</th>
<th>typ.</th>
<th>8.8W</th>
<th>input: 2x5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>typ.</td>
<td>9.5W</td>
<td>input: 1x10A</td>
<td></td>
</tr>
<tr>
<td>typ.</td>
<td>18.0W</td>
<td>input: 2x10A</td>
<td></td>
</tr>
</tbody>
</table>

Standby power losses | typ. | 1.0W | at no output current |

![Power losses graph](Fig. 4-1)

5. Alarm Contacts

Both input voltages are monitored individually. If one input voltage is too low or completely lost, it will be indicated by an alarm relay contact.

Each input has its own monitoring circuitry and relay contact.

- **Alarm threshold**: nom. 21.5V (±0.5V) Relay contact opens immediately after the input voltage falls below this value.
- **Contact ratings**: min. 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A. max. 1mA at 5Vdc. input: 1x10A. input: 2x10A
- **Isolation voltage**: see dielectric strength table in section 14.
6. Lifetime Expectancy and MTBF

The redundancy module has two input channels which are completely independent from each other. Each control circuit, auxiliary voltage source, or other circuitry in the module are designed separately for each input. The dual input redundancy module can be considered as two single redundancy modules combined together in one housing. The only common point is the circuit trace that ties the two separate circuits together at the output.

The MTBF figures below are for the entire dual input module. If the MTBF number of only one path is needed, simply double the value from the table.

The redundancy module does not have electrolytic capacitors included. Therefore, the lifetime expectancy is extremely high.

<table>
<thead>
<tr>
<th>Input / output current conditions</th>
<th>Input: 2x10A Output: 20A</th>
<th>Input: 2x5A Output: 10A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime expectancy)**</td>
<td>min. 25 years</td>
<td>25 years</td>
</tr>
<tr>
<td></td>
<td>min. 25 years</td>
<td>25 years</td>
</tr>
<tr>
<td>MTBF) SN 29500, IEC 61709</td>
<td>9 100 000h</td>
<td>10 900 000h</td>
</tr>
<tr>
<td></td>
<td>15 700 000h</td>
<td>18 800 000h</td>
</tr>
<tr>
<td>MTBF) MIL HDBK 217F</td>
<td>9 200 000h</td>
<td>11 100 000h</td>
</tr>
<tr>
<td></td>
<td>12 600 000h</td>
<td>15 100 000h</td>
</tr>
<tr>
<td></td>
<td>3 380 000h</td>
<td>4 060 000h</td>
</tr>
<tr>
<td></td>
<td>4 630 000h</td>
<td>5 570 000h</td>
</tr>
</tbody>
</table>

*) The **Lifetime expectancy** shown in the table indicates the minimum operating hours (service life).

) **MTBF stands for **Mean Time Between Failure**, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it can not be determined if the failed unit has been running for 50 000h or only for 100h.
7. TERMINALS AND WIRING

<table>
<thead>
<tr>
<th>Input and output terminals</th>
<th>Alarm-signal terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Type</td>
</tr>
<tr>
<td>Screw terminals</td>
<td>Screw terminals, pluggable</td>
</tr>
<tr>
<td>IP20 Finger safe construction.</td>
<td>IP20 Finger safe construction.</td>
</tr>
<tr>
<td>Suitable for field installation.</td>
<td>Suitable for field installation.</td>
</tr>
<tr>
<td>Solid wire</td>
<td>Solid wire</td>
</tr>
<tr>
<td>0.5-6mm²</td>
<td>0.2-1.5mm²</td>
</tr>
<tr>
<td>Stranded wire</td>
<td>Stranded wire</td>
</tr>
<tr>
<td>0.5-4mm²</td>
<td>0.2-1.5mm²</td>
</tr>
<tr>
<td>American Wire Gauge</td>
<td>American Wire Gauge</td>
</tr>
<tr>
<td>20-10 AWG</td>
<td>22-14 AWG</td>
</tr>
<tr>
<td>Max. wire diameter</td>
<td>Max. wire diameter</td>
</tr>
<tr>
<td>2.8mm (including ferrule)</td>
<td></td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>Wire stripping length</td>
</tr>
<tr>
<td>7mm / 0.28inch</td>
<td>6mm / 0.25inch</td>
</tr>
<tr>
<td>Screwdriver</td>
<td>Screwdriver</td>
</tr>
<tr>
<td>3.5mm slotted or Pozidrive No 2</td>
<td>3mm slotted</td>
</tr>
<tr>
<td>Recommended tightening torque</td>
<td>Recommended tightening torque</td>
</tr>
<tr>
<td>0.8Nm / 7lb.in</td>
<td>0.4Nm / 3.5lb.in</td>
</tr>
</tbody>
</table>

Instructions:

a) The external circuitry of all terminals (including signalling contacts) must meet the safety requirements stipulated by IEC/EN/UL 60950-1: SELV.

b) Use appropriate copper cables that are designed for minimum operating temperatures of:
 - 60°C for ambient up to 45°C and
 - 75°C for ambient up to 60°C minimum.

c) Follow national installation codes and installation regulations!

d) Ensure that all strands of a stranded wire enter the terminal connection!

e) Screws of unused terminal compartments should be securely tightened.

f) Ferrules are allowed.

g) Do not connect or disconnect the wires from the terminals below -25°C (-13°F).
8. Functional Diagram

![Functional Diagram](image)

9. Front Side and User Elements

![Front Side](image)

- **A** Output terminals
- **B** Chassis ground terminal
 Connection of the chassis to ground is optional and not required since the unit fulfils the requirements according to protection class III.
- **C** Input terminals for input 1
- **D** Input terminals for input 2
- **E** Alarm-signal terminals for input 1 monitoring (relay contact)
- **F** Alarm-signal terminals for input 2 monitoring (relay contact)
- **G** Green LED for input 1 (LED is on, when input voltage is in range)
- **H** Green LED for input 2 (LED is on, when input voltage is in range)
10. EMC

The redundancy module is suitable for applications in industrial environment as well as in residential, commercial and light industry environment without any restrictions. A detailed EMC report is available on request.

EMC Immunity

According to generic standards: EN 61000-6-1 and EN 61000-6-2

<table>
<thead>
<tr>
<th>Condition</th>
<th>Standard</th>
<th>Limit</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge</td>
<td>EN 61000-4-2</td>
<td>8kV, 15kV</td>
<td>A</td>
</tr>
<tr>
<td>Contact discharge</td>
<td></td>
<td>8kV</td>
<td>A</td>
</tr>
<tr>
<td>Air discharge</td>
<td></td>
<td>15kV</td>
<td>A</td>
</tr>
<tr>
<td>Electromagnetic RF field</td>
<td>EN 61000-4-3</td>
<td>80MHz-2.7GHz</td>
<td>A</td>
</tr>
<tr>
<td>Fast transients (Burst)</td>
<td>EN 61000-4-4</td>
<td>2kV</td>
<td>A</td>
</tr>
<tr>
<td>Input lines</td>
<td></td>
<td>2kV</td>
<td>A</td>
</tr>
<tr>
<td>Output lines</td>
<td></td>
<td>2kV</td>
<td>A</td>
</tr>
<tr>
<td>Alarm contacts</td>
<td></td>
<td>2kV</td>
<td>A</td>
</tr>
<tr>
<td>Surge voltage on input lines</td>
<td>EN 61000-4-5</td>
<td>+/- → Chassis ground</td>
<td>A</td>
</tr>
<tr>
<td>Surge voltage on output lines</td>
<td>EN 61000-4-5</td>
<td>+/- → Chassis ground</td>
<td>A</td>
</tr>
<tr>
<td>Surge voltage on alarm contacts</td>
<td>EN 61000-4-5</td>
<td>Alarm contact → Chassis ground</td>
<td>A</td>
</tr>
<tr>
<td>Conducted disturbance</td>
<td>EN 61000-4-6</td>
<td>0.15-80MHz</td>
<td>A</td>
</tr>
<tr>
<td>Power-frequency magnetic field *</td>
<td>EN 61000-4-8</td>
<td>50Hz</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30A/m</td>
<td>A</td>
</tr>
</tbody>
</table>

Criterions:

A: Redundancy module shows normal operation behavior within the defined limits.

Notes:

*) A test is not applicable according to EN 61000-6-2, since the device does not contain components susceptible to magnetic fields, e.g. hall elements, electrodynamic microphones, etc.

EMC Emission

According to generic standards: EN 61000-6-3 and EN 61000-6-4

<table>
<thead>
<tr>
<th>Condition</th>
<th>Standard</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted emission</td>
<td>IEC/CISPR 16-1-2, IEC/CISPR 16-2-1</td>
<td>B, input lines *)</td>
</tr>
<tr>
<td></td>
<td>IEC/CISPR 16-1-2, IEC/CISPR 16-2-1</td>
<td>B, output lines *)</td>
</tr>
<tr>
<td>Radiated emission</td>
<td>EN 55011, EN 55032</td>
<td>B</td>
</tr>
</tbody>
</table>

This device complies with FCC Part 15 rules.

Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

*) Provided, that power sources connected on the inputs fulfill the class B requirements too.
11. Environment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational temperature *)</td>
<td>-40°C to +70°C (-40°F to 158°F)</td>
</tr>
<tr>
<td>Output derating</td>
<td>0.5A/°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40 to +85°C (-40°F to 185°F)</td>
</tr>
<tr>
<td>Humidity **)</td>
<td>5 to 95% r.H.</td>
</tr>
<tr>
<td>Vibration sinusoidal ***)</td>
<td>2-17.8Hz: ±1.6mm</td>
</tr>
<tr>
<td></td>
<td>17.8-500Hz: 2g</td>
</tr>
<tr>
<td></td>
<td>2 hours / axis</td>
</tr>
<tr>
<td>Shock ***)</td>
<td>30g 6ms, 20g 11ms</td>
</tr>
<tr>
<td></td>
<td>3 bumps / direction</td>
</tr>
<tr>
<td></td>
<td>18 bumps in total</td>
</tr>
<tr>
<td>Altitude</td>
<td>0 to 6000m (0 to 6 560ft)</td>
</tr>
<tr>
<td></td>
<td>2000 to 6000m (6 560 to 20 000ft)</td>
</tr>
<tr>
<td>Altitude derating</td>
<td>1.25A/1000m or 5°C/1000m</td>
</tr>
<tr>
<td>Over-voltage category</td>
<td>not applicable</td>
</tr>
</tbody>
</table>

*) Operational temperature is the same as the ambient temperature and is defined as the air temperature 2cm below the unit.
**) Do not energize while condensation is present
***) Tested in combination with DIN rails according to EN 60715 with a height of 15mm and a thickness of 1.3mm and standard mounting orientation.

Fig. 11-1 Output current vs. ambient temp.
Fig. 11-2 Output current vs. altitude

Jul. 2021 / Rev. 1.6 DS-YRM2.DIODE-EN
All parameters are specified at 24V, 20A output current, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
12. PROTECTION FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output over-current protection</td>
<td>not included</td>
</tr>
<tr>
<td>Reverse input polarity protection</td>
<td>included, unit does not start when input voltage is reversed</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 20, EN/IEC 60529</td>
</tr>
<tr>
<td>Penetration protection</td>
<td>> 3.6mm, e.g., screws, small parts</td>
</tr>
<tr>
<td>Over-temperature protection</td>
<td>not included</td>
</tr>
<tr>
<td>Input transient protection</td>
<td>not included</td>
</tr>
<tr>
<td>Output transient protection</td>
<td>included, see EMC chapter</td>
</tr>
<tr>
<td>Internal input fuse</td>
<td>not included</td>
</tr>
</tbody>
</table>

13. SAFETY FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input / output separation</td>
<td>no galvanic separation, 200V epitaxial diode between input and output</td>
</tr>
<tr>
<td>Safety level of output voltage</td>
<td>The output voltage is regarded to be SELV (EN 60950-1) or PELV (EN 60204-1, EN 50178, IEC 60364-4-41) if the input voltage and the voltage which is applied to the alarm contacts fulfil the requirements for a SELV source or PELV source.</td>
</tr>
<tr>
<td>Class of protection</td>
<td>III, PE (Protective Earth) or chassis connection not required</td>
</tr>
<tr>
<td>PE resistance</td>
<td>< 0.1Ohm, between housing and chassis-ground terminal</td>
</tr>
</tbody>
</table>

14. DIELECTRIC STRENGTH

The input and output voltages have the same reference, are floating and have no ohmic connection to ground. Type and factory tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect input/output/signal terminals together before conducting the test.

When testing, set the cut-off current settings to the value in the table below.

<table>
<thead>
<tr>
<th>Test Type</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type test</td>
<td>60s</td>
<td>500Vac</td>
</tr>
<tr>
<td>Factory test</td>
<td>5s</td>
<td>500Vac</td>
</tr>
<tr>
<td>Field test</td>
<td>5s</td>
<td>500Vac</td>
</tr>
<tr>
<td>Cut-off current setting</td>
<td>> 2mA</td>
<td></td>
</tr>
</tbody>
</table>
15. **APPROVED, FULFILLED OR TESTED STANDARDS**

UL 508
- **UL Certificate**
 - Listed equipment for category NMTR - Industrial Control Equipment
 - Applicable for US and Canada
 - E-File: E198865

IEC 60950-1
- **CB Scheme Certificate**
 - General safety requirements for Information Technology Equipment (ITE)

UL 60950-1
- **UL Certificate**
 - Recognized component for category QQGQ - Information Technology Equipment (ITE)
 - Applicable for US and Canada
 - E-File: E137006

ATEX
- **Agency Certificate (Bureau Veritas)**
 - EN 60079-0 Explosive atmospheres - General requirements
 - EN 60079-7, EN 60079-15 Equipment protection by type of protection "e" and "n"
 - Certificate: EPS 11 ATEX 1 312 X
 - Temperature Code: T4
 - Type of Protection: ec nC

IECEx
- **IECEx Certificate**
 - IEC 60079-0 Explosive atmospheres - General requirements
 - IEC 60079-7, IEC 60079-15 Equipment protection by type of protection "e" and "n"
 - Certificate: IECEx EPS 12.0032 X
 - Temperature Code: T4
 - Type of Protection: ec nC

Class I Div 2
- **CSA Certificate**
 - Power Supplies for Hazardous Location
 - Applicable for Canada and US
 - CSA Class: 5318-01 (Canada), 5318-81 (USA)
 - Temperature Code: T4
 - Groups: A, B, C and D

Marine (DNV)
- **DNV Certificate**
 - DNV Type approved product
 - Certificate: TAA00001ST
 - Temperature: Class D
 - Humidity: Class B
 - Vibration: Class C
 - EMC: Class A
 - Enclosure: Class A

Marine (ABS)
- **ABS Design Assessment Certificate**
 - ABS (American Bureau of Shipment) assessed product
 - Certificate: 17-HG1599236-PD

IEC 60068-2-60
- **Manufacturer’s Declaration (Online Document)**
 - Environmental Tests, Flowing Mixed Gas Corrosion Test
 - Test Ke - Method 4
 - H2S: 10ppb
 - NO2: 200ppb
 - Cl2: 10ppb
 - SO2: 200ppb
 - Test Duration: 3 weeks, which simulates a service life of 10 years.

Jul. 2021 / Rev. 1.6 DS-YRM2.DIODE-EN
All parameters are specified at 24V, 20A output current, 25°C ambient and after a 5 minutes run-in time unless otherwise noted

www.pulspower.com Phone +49 89 9278 0 Germany
ISA-71.04 G3 Manufacturer’s Declaration (Online Document)
Airborne Contaminants Corrosion Test
Severity Level: G3 Harsh
H2S: 100ppb
NOx: 1250ppb
Cl2: 20ppb
SO2: 300ppb
Test Duration: 3 weeks, which simulates a service life of 10 years

Corrosion G3-ISA-71.04

VDMA 24364 Paint Wetting Impairment Substances Test (or LABS-Test)
Tested for Zone 2 and test class C1 according to VDMA 24364-C1-L/W for solvents and water-based paints

16. REGULATORY PRODUCT COMPLIANCE

EU Declaration of Conformity
The CE mark indicates conformance with the
- EMC directive
- ATEX directive
- RoHS directive

REACH Directive
REACH ✓ Manufacturer’s Statement
EU-Directive regarding the Registration, Evaluation, Authorization and Restriction of Chemicals

WEEE Directive
Manufacturer’s Statement
EU-Regulation on Waste Electrical and Electronic Equipment
Registered in Germany as business to business (B2B) products.

KC Korean Certificate
KC Registration
Korean registration of Broadcasting and Communication Equipment

EAC TR Registration
EAC Certificate
EAC EurAsian Conformity - Registration Russia, Kazakhstan and Belarus
8504408200, 8504409000
17. PHYSICAL DIMENSIONS AND WEIGHT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>350g / 0.77lb</td>
</tr>
<tr>
<td>DIN rail</td>
<td>Use 35mm DIN rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm. The DIN rail depth must be added to the unit depth (117mm) to calculate the total required installation depth.</td>
</tr>
<tr>
<td>Installation clearances</td>
<td>See chapter 2</td>
</tr>
</tbody>
</table>

Fig. 17-1 **Front view**

Fig. 17-2 **Side view**
18. ACCESSORIES

18.1. ZM1.WALL - WALL MOUNTING BRACKET
This standard bracket is used to mount the YR40 redundancy module onto a flat surface without utilizing a DIN rail.

Fig. 18-1 ZM1.WALL Wall mounting bracket
Fig. 18-2 Assembled wall mounting bracket

18.2. ZM11.SIDE - SIDE MOUNTING BRACKET
This bracket is used to mount the YR80 redundancy module sideways with or without utilizing a DIN rail.
The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted.
For sideways DIN rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket.

Fig. 18-3 ZM11.SIDE Side mounting bracket
Fig. 18-4 Side mounting with DIN rail brackets
19. APPLICATION NOTES

19.1. RECOMMENDATIONS FOR REDUNDANCY

Recommendations for the configuration of redundant power systems:

- Use separate input fuses for each power supply.
- Use three-phase power supplies to gain functional safety if one phase fails.
- When single-phase power supplies are utilized connect them to different phases or mains circuits if possible.
- Set the power supply in “Parallel-Use” mode if this feature is available
- It is desirable to set the output voltages of all power supplies to the same value.

19.2. INDUCTIVE AND CAPACITIVE LOADS

The unit is designed to supply any kind of loads, including unlimited capacitive and inductive loads.

19.3. EXAMPLE: 1+1 REDUNDANCY UP TO 10A

1+1 Redundancy up to 10A requires two 10A power supplies and one YRM2.DIODE redundancy module.

Fig. 19-1 Wiring diagram, 1+1 Redundancy, 10A output current

Note: Use separate mains systems for each power supply whenever it is possible
19.4. **EXAMPLE: N+1 REDUNDANCY UP TO 30A**

N+1 Redundancy up to 30A requires four 10A power supplies and two YRM2.DIODE redundancy modules.

![Wiring diagram, n+1 Redundancy, 30A output current](image)

Note: Use separate mains systems for each power supply whenever it is possible.

19.5. **EXAMPLE: BATTERY BACK-UP**

A battery back-up with 10A requires one 10A power supply and one YRM2.DIODE redundancy module.

Please note:
Set output voltage of power supply to 26.5Vdc minimum to ensure, that the load current is delivered from the power supply and not from charger (battery). Use a fuse between battery and YRM2.DIODE!

![Wiring diagram, 10A Battery back-up](image)
19.6. Example: Redundancy for Controls

The example shows a cost effective solution to get redundant power for a PLC or controller system. In many cases, two power supplies are used; one for the demanding loads and another one for the controls and sensitive loads. The power supply for the demanding loads can be used as a redundant source to supply the controls.

Traditional approach:

\[
\begin{align*}
\text{PS1} & \rightarrow \text{Load} \\
\text{PS2} & \rightarrow \text{PLC}
\end{align*}
\]

Improved approach:

\[
\begin{align*}
\text{PS1} & \rightarrow \text{Load} \\
\text{PS2} & \rightarrow \text{YRM2.DIODE} \\
& \rightarrow \text{PLC}
\end{align*}
\]

Fig. 19-4 Wiring diagram, redundancy for sensitive loads

Note: Use separate mains systems for each power supply whenever it is possible
19.7. **EXAMPLE: DECOUPLING OF BRANCHES**

Buffer energy supplied from a DC-UPS or buffer module is not wasted in “power branches”.

Please note:
Set output voltage of the power supply to a level that the buffer unit or DC-UPS will not start unexpected. Take the voltage drop of the YRM2.DIODE into account.

Fig. 19-5 Wiring diagram, decoupling of buffered branches

Note: Use separate mains systems for each power supply whenever it is possible

19.8. **USE IN A TIGHTLY SEALED ENCLOSURE**

When the redundancy module is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. The inside temperature defines the ambient temperature for the redundancy module.

Results from such an installation:

Power supply is placed in the middle of the box, no other heat producer inside the box

- **Enclosure:** Rittal Typ IP66 Box PK 9516 100, plastic, 110x180x165mm
- **Load:** 24V, 16A; (=80%) load is placed outside the box
- **Input:** 24Vdc
- **Temperature inside enclosure:** 58.8°C (in the middle of the right side of the power supply with a distance of 2cm)
- **Temperature outside enclosure:** 24.6°C
- **Temperature rise:** 34.2K
19.9. MOUNTING ORIENTATIONS

Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature.

![Fig. 19-6 Mounting Orientation A (Standard orientation)](image1)

![Fig. 19-7 Mounting Orientation B (Upside down)](image2)

![Fig. 19-8 Mounting Orientation C (Table-top mounting)](image3)

![Fig. 19-9 Mounting Orientation D (Horizontal cw)](image4)

![Fig. 19-10 Mounting Orientation E (Horizontal ccw)](image5)