GENERAL DESCRIPTION

The DIMENSION CP-Series units are high-end power supplies in a medium price range without compromising quality, reliability and performance. The CP-Series is part of the DIMENSION power supply family. The most outstanding features of CP10 are the high efficiency, advanced inrush current limitation, active PFC and the wide operational temperature range.

The CP-Series includes all the essential basic functions. The devices have a power reserve of 20% included, which may even be used continuously at temperatures up to +45°C. Additionally, the CP10 can deliver three times the nominal output current for at least 12ms which helps to trip fuses on faulty output branches. High immunity to transients and power surges as well as low electromagnetic emission, a shut-down input, a DC-OK relay contact and a large international approval package for a variety of applications makes this unit suitable for nearly every situation.

SHORT-FORM DATA

Output voltage DC 12V Nominal
Adjustment range 12 - 15Vdc Factory setting 12.0V
Output current
19.2 – 15.4A Below +45°C ambient
16.0 – 12.8A At +60°C ambient
12.0 – 9.6A At +70°C ambient
Derate linearly between +45°C and +70°C

Input voltage AC AC 100-240V -15% / +10%
Mains frequency 50-60Hz ±6%
Input current AC 1.74 / 0.92A At 120 / 230Vac
Power factor 0.99 / 0.96 At 120 / 230Vac
Input voltage DC DC 110-150V ±20% For CP10.121
DC 110-300V ±20% For CP10.122
Input current DC 1.90A At 110Vdc
1.38A At 150Vdc
0.68A At 300Vdc
Input inrush current 6 / 9A pk At 120 / 230Vac, 40°C
Efficiency 92.8 / 94.3% At 120 / 230Vac
Losses 14.9 / 11.6W At 120 / 230Vac
Hold-up time 50ms
Temperature range -25°C to +70°C
Size (w x h x d) 39x124x117mm Without DIN-rail
Weight 600g / 1.3lb

ORDER NUMBERS

Power Supply CP10.121 Standard unit (preferred item)
CP10.122 With extended DC-input

Mechanical Accessory
ZM12.SIDE Side mount bracket
ZM4.WALL Wall/panel mount bracket

MAJOR AGENCY APPROVALS

For details and a complete approval list see section 21.

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN
All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
The information given in this document is correct to the best of our knowledge and experience at the time of publication. If not expressly agreed otherwise, this information does not represent a warranty in the legal sense of the word. As the state of our knowledge and experience is constantly changing, the information in this data sheet is subject to revision. We therefore kindly ask you to always use the latest issue of this document (available under www.pulspower.com).

No part of this document may be reproduced or utilized in any form without our prior permission in writing.

TERMINOLOGY AND ABREVIATIONS

PE and symbol PE is the abbreviation for Protective Earth and has the same meaning as the symbol地球.

Earth, Ground This document uses the term “earth” which is the same as the U.S. term “ground”.

T.b.d. To be defined, value or description will follow later.

AC 230V A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±15%) included.

E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V) 230Vac A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included.

50Hz vs. 60Hz As long as not otherwise stated, AC 100V and AC 230V parameters are valid at 50Hz mains frequency. AC 120V parameters are valid for 60Hz mains frequency.

may A key word indicating flexibility of choice with no implied preference.

shall A key word indicating a mandatory requirement.

should A key word indicating flexibility of choice with a strongly preferred implementation.

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN
All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
1. INTENDED USE

This device is designed for installation in an enclosure and is intended for the general professional use such as in industrial control, office, communication, and instrumentation equipment.

Do not use this power supply in equipment, where malfunction may cause severe personal injury or threaten human life.

2. INSTALLATION REQUIREMENTS

This device may only be installed and put into operation by qualified personnel.

This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect.

If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection.

Mount the unit on a DIN-rail so that the input terminals are located on the bottom of the unit. For other mounting orientations see de-rating requirements in this document. See chapter 25.12.

This device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid (e.g. cable conduits) by more than 15%!

Keep the following installation clearances: 40mm on top, 20mm on the bottom, 5mm on the left and right sides are recommended when the device is loaded permanently with more than 50% of the rated power. Increase this clearance to 15mm in case the adjacent device is a heat source (e.g. another power supply).

A disconnecting means shall be provided for the output of the power supplies when used in applications according to CSA C22.2 No 107.1-01.

WARNING

Risk of electrical shock, fire, personal injury or death.

- Do not use the power supply without proper grounding (Protective Earth). Use the terminal on the input block for earth connection and not one of the screws on the housing.
- Turn power off before working on the device. Protect against inadvertent re-powering.
- Make sure that the wiring is correct by following all local and national codes.
- Do not modify or repair the unit.
- Do not open the unit as high voltages are present inside.
- Use caution to prevent any foreign objects from entering the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns.

Notes for use in hazardous location areas:

The power supply is suitable for use in Class I Division 2 Groups A, B, C, D locations and for use in Group II Category 3 (Zone 2) environments. See section 21 for details.

WARNING EXPLOSION HAZARDS!

Substitution of components may impair suitability for this environment. Do not disconnect the unit or operate the voltage adjustment unless power has been switched off or the area is known to be non-hazardous.

A suitable enclosure must be provided for the end product which has a minimum protection of IP54 and fulfils the requirements of the EN 60079-15.
3. AC-INPUT

AC input Nom. AC 100-240V Suitable for TN-, TT- and IT mains networks
AC input range Min. 85-264Vac Continuous operation
Min. 264-300Vac For maximal 500ms
Allowed voltage L or N to earth Max. 300Vac Continuous, IEC 62103
Input frequency Nom. 50–60Hz ±6%
Turn-on voltage Typ. 80Vac Steady-state value, see Fig. 3-1
Shut-down voltage Typ. 70Vac Steady-state value, see Fig. 3-1
Typ. 55Vac Dynamic value (250ms)
External input protection See recommendations in chapter 25.3.

<table>
<thead>
<tr>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input current</td>
<td>Typ. 2.11A</td>
<td>1.74A</td>
</tr>
<tr>
<td>Power factor*)</td>
<td>Typ. 0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Crest factor**)</td>
<td>Typ. 1.5</td>
<td>1.65</td>
</tr>
<tr>
<td>Start-up delay</td>
<td>Typ. 300ms</td>
<td>290ms</td>
</tr>
<tr>
<td>Rise time</td>
<td>Typ. 18ms</td>
<td>18ms</td>
</tr>
<tr>
<td></td>
<td>Typ. 35ms</td>
<td>35ms</td>
</tr>
<tr>
<td>Turn-on overshoot</td>
<td>Max. 200mV</td>
<td>200mV</td>
</tr>
</tbody>
</table>

*) The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit.
**) The crest factor is the mathematical ratio of the peak value to RMS value of the input current waveform.

Fig. 3-1 Input voltage range

Fig. 3-2 Turn-on behavior, definitions

Fig. 3-3 Input current vs. output current at 12V output voltage

Fig. 3-4 Power factor vs. output current at 12V output voltage

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN
All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
4. DC-INPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage DC</td>
<td>Nom. DC 110-150V ±20% For CP10.121</td>
</tr>
<tr>
<td>Input voltage range DC</td>
<td>Min. 88-180Vdc For CP10.121</td>
</tr>
<tr>
<td>Input voltage range DC</td>
<td>Min. 88-360Vdc For CP10.122</td>
</tr>
<tr>
<td>DC input current</td>
<td>Typ. 1.90A At 110Vdc, 12V, 16A</td>
</tr>
<tr>
<td>DC input current</td>
<td>Typ. 1.38A At 150Vdc, 12V, 16A</td>
</tr>
<tr>
<td>DC input current</td>
<td>Typ. 0.68A At 300Vdc, 12V, 16A</td>
</tr>
<tr>
<td>Allowed voltage L/N to earth</td>
<td>Max. 375Vdc Continuous, IEC 62477-1</td>
</tr>
<tr>
<td>Turn-on voltage</td>
<td>Typ. 80Vdc Steady state value</td>
</tr>
<tr>
<td>Shut-down voltage</td>
<td>Typ. 70Vdc Steady state value</td>
</tr>
<tr>
<td>Shut-down voltage</td>
<td>typ. 55Vac Dynamic value (250ms)</td>
</tr>
</tbody>
</table>

Instructions for DC use:

- a) Use a battery or a similar DC source. A supply from the intermediate DC-bus of a frequency converter is not recommended and can cause a malfunction or damage the unit.
- b) Connect +pole to L and –pole to N.
- c) Connect the PE terminal to an earth wire or to the machine ground.
5. **Input Inrush Current**

An active inrush limitation circuit (NTCs, which are bypassed by a relay contact) limits the input inrush current after turn-on of the input voltage.

The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

<table>
<thead>
<tr>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush current</td>
<td>Max. 11A<sub>peak</sub></td>
<td>7A<sub>peak</sub></td>
</tr>
<tr>
<td>Typ. 9A<sub>peak</sub></td>
<td>6A<sub>peak</sub></td>
<td>6A<sub>peak</sub></td>
</tr>
<tr>
<td>Inrush energy</td>
<td>Max. 0.1A<sup>2</sup>s</td>
<td>0.1A<sup>2</sup>s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush current</td>
<td>Max. 11A<sub>peak</sub></td>
<td>7A<sub>peak</sub></td>
</tr>
<tr>
<td>Typ. 9A<sub>peak</sub></td>
<td>6A<sub>peak</sub></td>
<td>6A<sub>peak</sub></td>
</tr>
<tr>
<td>Inrush energy</td>
<td>Max. 0.1A<sup>2</sup>s</td>
<td>0.1A<sup>2</sup>s</td>
</tr>
</tbody>
</table>

![Typical turn-on behaviour at nominal load, 120Vac input and 25°C ambient](image1)

![Typical turn-on behaviour at nominal load, 230Vac input and 25°C ambient](image2)

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN

All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
6. OUTPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nom.</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>Nom.</td>
<td>12Vdc</td>
</tr>
<tr>
<td>Adjustment range</td>
<td>Min.</td>
<td>12-15Vdc</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>16.5Vdc</td>
</tr>
<tr>
<td>Guaranteed value</td>
<td></td>
<td>This is the maximum output voltage which can occur at the clockwise end position of the potentiometer due to tolerances. It is not a guaranteed value which can be achieved.</td>
</tr>
<tr>
<td>Factory settings</td>
<td>Typ.</td>
<td>12.0Vdc ±0.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At full load and cold unit</td>
</tr>
<tr>
<td>Line regulation</td>
<td>Max.</td>
<td>10mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Between 85 and 300Vac</td>
</tr>
<tr>
<td>Load regulation</td>
<td>Max.</td>
<td>50mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Between 0 and 19.2A, static value, see Fig. 6-1</td>
</tr>
<tr>
<td>Ripple and noise voltage</td>
<td>Max.</td>
<td>50mVpp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bandwidth 20Hz to 20MHz, 50Ohm</td>
</tr>
<tr>
<td>Output current</td>
<td>Nom.</td>
<td>19.2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 12V and an ambient temperature below 45°C, see Fig. 17-1</td>
</tr>
<tr>
<td></td>
<td>Nom.</td>
<td>16A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 12V and 60°C ambient temperature, see Fig. 6-1</td>
</tr>
<tr>
<td></td>
<td>Nom.</td>
<td>12A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 12V and 70°C ambient temperature, see Fig. 17-1</td>
</tr>
<tr>
<td></td>
<td>Nom.</td>
<td>15.4A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 15V and a ambient temperature below 45°C, see Fig. 17-1</td>
</tr>
<tr>
<td></td>
<td>Nom.</td>
<td>12.8A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 15V and 60°C ambient temperature, see Fig. 6-1</td>
</tr>
<tr>
<td></td>
<td>Nom.</td>
<td>9.6A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 15V and 70°C ambient temperature, see Fig. 17-1</td>
</tr>
<tr>
<td></td>
<td>Typ.</td>
<td>48A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For minimal 12ms once every five seconds, see Fig. 6-2. The output voltage stays above 10V. See chapter 25.1 for more peak current measurements. For AC 100V mains, the pulse length is shorter than 12ms.</td>
</tr>
<tr>
<td>Overload behaviour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continuous current</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HiccupPLUS mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output voltage above 6.5Vdc, see Fig. 6-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output voltage below 6.5Vdc, see Fig. 6-1</td>
<td></td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>Min.</td>
<td>20.5A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Load impedance <30mOhm, see Fig. 6-3</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>25.5A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Load impedance <30mOhm, see Fig. 6-3</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>7.3A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average (R.M.S.) current, load impedance 50mOhm, see Fig. 6-3</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>50A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up to 12ms, load impedance <30mOhm, see Fig. 6-2</td>
</tr>
<tr>
<td></td>
<td>Typ.</td>
<td>55A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up to 12ms, load impedance <30mOhm, see Fig. 6-2</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>Typ.</td>
<td>5 350μF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Included inside the power supply</td>
</tr>
</tbody>
</table>

1) **Power Boost**

This power/current is continuously allowed up to an ambient temperature of 45°C. Above 45°C, do not use this power/current longer than a duty cycle of 10% and/or not longer than 1 minute every 10 minutes.

2) **HiccupPLUS Mode**

At heavy overloads (when output voltage falls below 6.5V), the power supply delivers continuous output current for 2s. After this, the output is switched off for approx. 18s before a new start attempt is automatically performed. This cycle is repeated as long as the overload exists. If the overload has been cleared, the device will operate normally. See Fig. 6-3

3) Discharge current of output capacitors is not included.

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN

All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
7. HOLD-UP TIME

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold-up Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ.</td>
<td>108ms</td>
<td>108ms</td>
<td>108ms</td>
</tr>
<tr>
<td>Min.</td>
<td>81ms</td>
<td>81ms</td>
<td>81ms</td>
</tr>
<tr>
<td>Typ.</td>
<td>50ms</td>
<td>50ms</td>
<td>50ms</td>
</tr>
<tr>
<td>Min.</td>
<td>38ms</td>
<td>38ms</td>
<td>38ms</td>
</tr>
</tbody>
</table>

At 12V, 8A, see Fig. 7-1
At 12V, 16A, see Fig. 7-1

Fig. 7-1 Hold-up time vs. input voltage

Fig. 7-2 Shut-down behavior, definitions

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN
All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
8. DC-OK RELAY CONTACT

This feature monitors the output voltage on the output terminals of a running power supply.

- **Contact closes** As soon as the output voltage reaches typ. 90% of the adjusted output voltage level.
- **Contact opens** As soon as the output voltage dips more than 10% below the adjusted output voltage. Short dips will be extended to a signal length of 100ms. Dips shorter than 1ms will be ignored.
- **Switching hysteresis** Typ. 0.5V
- **Contact ratings** Maximal 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A, resistive load
- **Minimal permissible load** 1mA at 5Vdc
- **Isolation voltage** See dielectric strength table in section 18.

![Fig. 8-1 DC-ok relay contact behavior](image)

9. REMOTE ON / OFF FUNCTION

This feature allows to switch-off the power supply output with a signal switch or transistor. A link between pin 15 and 16 turns the power supply off. Pin 15 is referenced to the (-) output voltage. The open-loop voltage between pin 16 and pin 15 can be up to 18V, the maximum current, when in remote OFF mode, can be up to 2.5mA.

The threshold level to switch-off the output is typically 5V and the turn-on threshold is typically 9V.

When multiple power supplies are connected in parallel, pin 15 and pin 16 are also allowed to be paralleled to control all units with the same switch or transistor.

Please note: The shut-down function has no safety feature included.

![Fig. 9-1 The switch-off and the turn-on timing](image)

A: Turn-on delay acc. Fig. 3-2
B: Rise time acc. Fig. 3-2
C: No active discharge of the output after switch-off

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN
All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
10. EFFICIENCY AND POWER LOSSES

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>92.1%</td>
<td>92.8%</td>
<td>94.3%</td>
</tr>
<tr>
<td>typ.</td>
<td>92.0%</td>
<td>92.7%</td>
<td>94.2%</td>
</tr>
<tr>
<td>typ.</td>
<td>91.6%</td>
<td>92.2%</td>
<td>93.3%</td>
</tr>
<tr>
<td>typ.</td>
<td>91.6%</td>
<td>92.2%</td>
<td>93.3%</td>
</tr>
<tr>
<td>Average efficiency*)</td>
<td>91.6%</td>
<td>92.2%</td>
<td>93.3%</td>
</tr>
<tr>
<td>typ.</td>
<td>91.6%</td>
<td>92.2%</td>
<td>93.3%</td>
</tr>
<tr>
<td>Power losses</td>
<td>0.5W**)</td>
<td>0.5W**)</td>
<td>0.6W**)</td>
</tr>
<tr>
<td>typ.</td>
<td>3.1W</td>
<td>3.0W</td>
<td>2.5W</td>
</tr>
<tr>
<td>typ.</td>
<td>8.0W</td>
<td>7.8W</td>
<td>6.7W</td>
</tr>
<tr>
<td>typ.</td>
<td>16.5W</td>
<td>14.9W</td>
<td>11.6W</td>
</tr>
<tr>
<td>typ.</td>
<td>20.0W</td>
<td>18.1W</td>
<td>13.9W</td>
</tr>
<tr>
<td>typ.</td>
<td>0.5W**)</td>
<td>0.5W**)</td>
<td>0.6W**)</td>
</tr>
<tr>
<td>typ.</td>
<td>3.1W</td>
<td>3.0W</td>
<td>2.5W</td>
</tr>
<tr>
<td>typ.</td>
<td>8.0W</td>
<td>7.8W</td>
<td>6.7W</td>
</tr>
<tr>
<td>typ.</td>
<td>16.5W</td>
<td>14.9W</td>
<td>11.6W</td>
</tr>
<tr>
<td>typ.</td>
<td>20.0W</td>
<td>18.1W</td>
<td>13.9W</td>
</tr>
<tr>
<td>typ.</td>
<td>0.5W**)</td>
<td>0.5W**)</td>
<td>0.6W**)</td>
</tr>
<tr>
<td>typ.</td>
<td>3.1W</td>
<td>3.0W</td>
<td>2.5W</td>
</tr>
<tr>
<td>typ.</td>
<td>8.0W</td>
<td>7.8W</td>
<td>6.7W</td>
</tr>
<tr>
<td>typ.</td>
<td>16.5W</td>
<td>14.9W</td>
<td>11.6W</td>
</tr>
<tr>
<td>typ.</td>
<td>20.0W</td>
<td>18.1W</td>
<td>13.9W</td>
</tr>
</tbody>
</table>

*) The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time.

**) In OFF mode, the unit fulfills the ErP requirements of the European Union.

Fig. 10-1 Efficiency vs. output current at 12V, typ.
Fig. 10-2 Losses vs. output current at 12V, typ.
Fig. 10-3 Efficiency vs. input voltage at 12V, 16A, typ.
Fig. 10-4 Losses vs. input voltage at 12V, 16A, typ.
11. LIFETIME EXPECTANCY

The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor’s manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131 400h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>12V, 8A and 40°C</th>
<th>12V, 8A and 25°C</th>
<th>12V, 16A and 40°C</th>
<th>12V, 16A and 25°C</th>
<th>12V, 19.2A and 40°C</th>
<th>12V, 19.2A and 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 100V</td>
<td>155 000h</td>
<td>176 000h</td>
<td>189 000h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC 120V</td>
<td>437 000h</td>
<td>499 000h</td>
<td>534 000h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC 230V</td>
<td>66 000h</td>
<td>75 000h</td>
<td>97 000h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>188 000h</td>
<td>213 000h</td>
<td>275 000h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 000h</td>
<td>40 000h</td>
<td>57 000h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>94 000h</td>
<td>112 000h</td>
<td>160 000h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. MTBF

MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it cannot be determined if the failed unit has been running for 50 000h or only for 100h.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>12V, 16A and 40°C</th>
<th>12V, 16A and 25°C</th>
<th>12V, 16A and 40°C; Ground Benign GB40</th>
<th>12V, 16A and 25°C; Ground Benign GB25</th>
<th>12V, 16A and 40°C; Ground Fixed GF40</th>
<th>12V, 16A and 25°C; Ground Fixed GF25</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 100V</td>
<td>587 000h</td>
<td>607 000h</td>
<td>690 000h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC 120V</td>
<td>1 025 000h</td>
<td>1 056 000h</td>
<td>1 185 000h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC 230V</td>
<td>246 000h</td>
<td>249 000h</td>
<td>278 000h</td>
<td>At 12V, 16A and 40°C</td>
<td>Ground Benign GB40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>333 000h</td>
<td>337 000h</td>
<td>381 000h</td>
<td>At 12V, 16A and 25°C</td>
<td>Ground Benign GB25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55 000h</td>
<td>55 000h</td>
<td>64 000h</td>
<td>At 12V, 16A and 40°C</td>
<td>Ground Fixed GF40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 000h</td>
<td>71 000h</td>
<td>83 000h</td>
<td>At 12V, 16A and 25°C</td>
<td>Ground Fixed GF25</td>
<td></td>
</tr>
</tbody>
</table>
13. FUNCTIONAL DIAGRAM

Fig. 13-1 Functional diagram

Input Fuse
Input Filter
Input Rectifier
Inrush Current Limiter

PFC Converter

Power Converter

Output Voltage Regulator

Output Filter

Output Voltage Protection

Power Manager

Temperature Shutdown

Output Relay

DC-ok LED

DC-ok Contact

Remote ON / OFF
(Shut-down)

ON /
OFF

L
N

+ V_{out}

-
14. TERMINALS AND WIRING

The terminals are IP20 finger safe constructed and suitable for field- and factory wiring.

<table>
<thead>
<tr>
<th>Type</th>
<th>Input and output</th>
<th>DC-OK-Signal, Shut-down input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid wire</td>
<td>Screw terminals</td>
<td>Max. 6mm²</td>
</tr>
<tr>
<td>Stranded wire</td>
<td>Screw terminals</td>
<td>Max. 4mm²</td>
</tr>
<tr>
<td>American Wire Gauge</td>
<td>Push-in terminals</td>
<td>Max. 1.5mm²</td>
</tr>
<tr>
<td></td>
<td>Push-in terminals</td>
<td>AWG 20-10</td>
</tr>
<tr>
<td>Wire diameter</td>
<td>Max. 2.8mm (including ferrules)</td>
<td>Max. 1.6mm (including ferrules)</td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>7mm / 0.28inch</td>
<td>7mm / 0.28inch</td>
</tr>
<tr>
<td>Screwdriver</td>
<td>3.5mm slotted or cross-head No 2</td>
<td>3.0mm slotted to open the spring</td>
</tr>
<tr>
<td>Recommended tightening torque</td>
<td>1Nm, 9lb.in</td>
<td>-</td>
</tr>
</tbody>
</table>

Instructions:
- a) Use appropriate copper cables that are designed for minimum operating temperatures of:
 - 60°C for ambient up to 45°C and
 - 75°C for ambient up to 60°C minimum
 - 90°C for ambient up to 70°C minimum.
- b) Follow national installation codes and installation regulations!
- c) Ensure that all strands of a stranded wire enter the terminal connection!
- d) Unused terminal compartments should be securely tightened.
- e) Ferrules are allowed.

Daisy chaining:
Daisy chaining (jumping from one power supply output to the next) is allowed as long as the average output current through one terminal pin does not exceed 25A. If the current is higher, use a separate distribution terminal block as shown in Fig. 14-2.

Fig. 14-1 Daisy chaining of outputs

Fig. 14-2 Using distribution terminals
15. FRONT SIDE AND USER ELEMENTS

A Input Terminals (screw terminal)
 - N, L: Line input
 - PE: (Protective Earth) input

B Output Terminals (screw terminal, two identical + poles and three identical - poles)
 - +: Positive output
 - -: Negative (return) output

C Output voltage potentiometer
 Open the flap to adjust the output voltage. Factory set: 12.0V

D DC-OK LED (green)
 On, when the output voltage is >90% of the adjusted output voltage

E DC-OK Relay Contact (quick-connect spring-clamp terminals)
 Monitors the output voltage of the running power supply. See chapter 8 for details.

F Remote ON/OFF Input (quick-connect spring-clamp terminals)
 Pin 15 and 16 must be connected to turn the power supply off. See chapter 9 for details.

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN
All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
16. EMC

The power supply is suitable for applications in industrial environments as well as in residential, commercial and light industry environments.

EMC Immunity

- **Electrostatic discharge**
 - EN 61000-4-2
 - 8kV: Criterion A
 - 15kV: Criterion A

- **Fast transients (Burst)**
 - EN 61000-4-4
 - Input lines: 4kV
 - Output lines: 2kV
 - DC-OK signal (coupling clamp): 2kV
 - Shut-down input: 2kV

- **Surge voltage on input**
 - EN 61000-4-5
 - L → N: 2kV
 - L → PE, N → PE: 4kV

- **Surge voltage on output**
 - EN 61000-4-5
 - + → -: 1kV
 - + / - → PE: 2kV

- **Surge voltage on Signals**
 - EN 61000-4-5
 - DC-OK signal → PE: 1kV
 - Shut-down input → PE: 1kV

- **Conducted disturbance**
 - EN 61000-4-6
 - 0.15-80MHz: 20V

- **Mains voltage dips**
 - EN 61000-4-11
 - 0% of 100Vac: 0Vac, 20ms
 - 40% of 100Vac: 40Vac, 200ms
 - 70% of 100Vac: 70Vac, 500ms
 - 0% of 200Vac: 0Vac, 20ms
 - 40% of 200Vac: 40Vac, 200ms
 - 70% of 200Vac: 70Vac, 500ms

- **Voltage interruptions**
 - EN 61000-4-11
 - 0% of 200Vac (=0V): 5000ms

- **Voltage sags**
 - SEMI F47 0706
 - Dips on the input voltage according to SEMI F47 standard
 - 80% of 120Vac (96Vac): 1000ms
 - 70% of 120Vac (84Vac): 500ms
 - 50% of 120Vac (60Vac): 200ms

- **Powerful transients**
 - VDE 0160
 - Over entire load range: 750V, 0.3ms

Criteria:

- **A:** Power supply shows normal operation behavior within the defined limits.
- **C:** Temporary loss of function is possible. Power supply may shut-down and restarts by itself. No damage or hazards for the power supply will occur.

EMC Emission

- **Conducted emission**
 - EN 55011, EN 55003, EN 55022, FCC Part 15, CISPR 11, CISPR 22
 - Class B

- **Conducted emission output lines**
 - IEC/CISPR 16-1-2, IEC/CISPR 16-2-1
 - Limits for DC power port according EN 61000-6-3 fulfilled

- **Radiated emission**
 - EN 55011, EN 55022
 - Class B

- **Harmonic input current**
 - EN 61000-3-2
 - Class A fulfilled between 0A and 19.2A load
 - Class C fulfilled between 10A and 19.2A load

- **Voltage fluctuations, flicker**
 - EN 61000-3-3
 - Fulfilled

This device complies with FCC Part 15 rules.
Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

1) Tested with constant current loads, non pulsing
2) For information only, not mandatory for EN 61000-6-3

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN
All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
17. ENVIRONMENT

Operational temperature 1) -25°C to +70°C (-13°F to 158°F) Reduce output power according to Fig. 17-1

Storage temperature -40°C to +85°C (-40°F to 185°F) For storage and transportation

Output de-rating
- 2.5W/°C Between +45°C and +60°C (113°F to 140°F)
- 4.8W/°C Between +60°C and +70°C (140°F to 158°F)

Humidity 5 to 95% r.h. According to IEC 60068-2-30

Vibration sinusoidal 2) 2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g According to IEC 60068-2-6

Shock 2) 30g 6ms, 20g 11ms According to IEC 60068-2-27

Altitude
- 0 to 2000m (0 to 6 560ft) Without any restrictions
- 2000 to 6000m (6 560 to 20 000ft) Reduce output power or ambient temperature, see Fig. 17-2.

Altitude de-rating 13.5W/1000m or 5°C/1000m Above 2000m (6560ft), see Fig. 17-2

Over-voltage category
- III According to IEC 62477-1 for altitudes up to 2000m
- II According to IEC 62477-1 for altitudes from 2000m to 6000m

Degree of pollution 2 According to IEC 62477-1, not conductive

LABS compatibility The unit does not release any silicone or other LABS-critical substances and is suitable for use in paint shops.

Corrosive gases ISA-71.04-1985, Severity Level G3, IEC 60068-2-60 Test Ke Method 4

Audible noise Some audible noise may be emitted from the power supply during no load, overload or short circuit.

1) Operational temperature is the same as the ambient or surrounding temperature and is defined as the air temperature 2cm below the unit.

2) Tested in combination with DIN-Rails according to EN 60715 with a height of 15mm and a thickness of 1.3mm and standard orientation.
18. PROTECTION FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output protection</td>
<td>Electronically protected against overload, no-load and short-circuits. In case of a protection event, audible noise may occur.</td>
</tr>
</tbody>
</table>
| Output over-voltage protection | Typ. 18.2Vdc
Max. 19Vdc
In case of an internal power supply defect, a redundant circuit limits the maximum output voltage. The output shuts down and automatically attempts to restart. |
| Degree of protection | IP 20
EN/IEC 60529
Typically protected against overload, no-load and short-circuits. In case of a protection event, audible noise may occur. |
| Penetration protection | > 4mm
E.g. screws, small parts
Max. 19Vdc
Typically protected against overload, no-load and short-circuits. In case of a protection event, audible noise may occur. |
| Over-temperature protection | Yes
Output shut-down with automatic restart. The temperature sensor is installed on critical components inside the unit and turns the unit off in safety critical situations (e.g. de-rating requirements not observed, high ambient temperature, ventilation obstructed or the mounting orientation de-rating is not followed). There is no correlation between the operating temperature and turn-off temperature since this is dependent on input voltage, load and installation methods. |
| Input transient protection | MOV (Metal Oxide Varistor)
For protection values see chapter 16 (EMC). |
| Internal input fuse | Included
Not user replaceable slow-blow high-braking capacity fuse |

19. SAFETY FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| Input / output separation | Double or reinforced galvanic isolation
SELV
PELV
IEC/EN 60950-1
IEC/EN 60204-1, EN 50178, IEC 62103, IEC 60364-4-41
SELV IEC/EN 60950-1
PELV IEC/EN 60204-1, EN 50178, IEC 62103, IEC 60364-4-41 |
| Class of protection | I
PE (Protective Earth) connection required |
| Isolation resistance | > 500MΩ
At delivered condition between input and output, measured with 500Vdc
> 500MΩ
At delivered condition between input and PE, measured with 500Vdc
> 500MΩ
At delivered condition between output and PE, measured with 500Vdc
> 500MΩ
At delivered condition between output and DC-OK contacts, measured with 500Vdc
PE resistance < 0.1Ω
Resistance between PE terminal and the housing in the area of the DIN-rail mounting bracket |
| Touch current (leakage current) | Typ. 0.14mA / 0.36mA
At 100Vac, 50Hz, TN-, TT-mains / IT-mains
Typ. 0.20mA / 0.50mA
At 120Vac, 60Hz, TN-, TT-mains / IT-mains
Typ. 0.33mA / 0.86mA
At 230Vac, 50Hz, TN-, TT-mains / IT-mains
Max. 0.18mA / 0.43mA
At 110Vac, 50Hz, TN-, TT-mains / IT-mains
Max. 0.26mA / 0.61mA
At 132Vac, 60Hz, TN-, TT-mains / IT-mains
Max. 0.44mA / 1.05mA
At 264Vac, 50Hz, TN-, TT-mains / IT-mains
20. **Dielectric Strength**

The output voltage is floating and has no ohmic connection to the ground. Type and factory tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect all input-termins together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below.

- **Type test**: 60s, 2500Vac, 4000Vac, 1000Vac, 500Vac
- **Factory test**: 5s, 2500Vac, 2500Vac, 500Vac, 500Vac
- **Field test**: 5s, 2000Vac, 2000Vac, 500Vac, 500Vac

<table>
<thead>
<tr>
<th>Cut-off current setting</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> 10mA</td>
<td>> 10mA</td>
<td>> 20mA</td>
<td>> 1mA</td>
</tr>
</tbody>
</table>

To fulfil the PELV requirements according to EN60204-1 § 6.4.1, we recommend that either the + pole, the – pole or any other part of the output circuit shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off when unnoticed earth faults occur.

B*) When testing input to DC-OK ensure that the max. voltage between DC-OK and the output is not exceeded (column D). We recommend connecting DC-OK pins and the output pins together when performing the test.
21. Approvals

EC Declaration of Conformity

The CE mark indicates conformance with the - EMC directive, - Low-voltage directive (LVD) and the - ATEX directive (only CP10.121)

IEC 60950-1 2nd Edition

CB Scheme, Information Technology Equipment

UL 508 (only CP10.121)

listed for use as Industrial Control Equipment; U.S.A. (UL 508) and Canada (C22.2 No. 107-1-01); E-File: E198865

UL 60950-1 2nd Edition (only CP10.121)

Recognized for use as Information Technology Equipment, Level 5; U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950-1); E-File: E137006

ANSI / ISA 12.12.01-2015 Class I Div 2 (only CP10.121)

EN 60079-0, EN 60079-15 ATEX (only CP10.121)

Approval for use in hazardous locations Zone 2 Category 3G. Number of ATEX certificate: EPS 15 ATEX 1 101 X

IEC 60079-0, IEC 60079-15 (only CP10.121)

Suitable for use in Class 1 Zone 2 Groups Ila, IIB and IIC locations. Number of IECEx certificate: IECEx EPS 15.0079X

Marine (only CP10.121)

GL (Germanischer Lloyd) classified Environmental category: C, EMC2 Marine and offshore applications

EAC TR Registration (only CP10.121)

Registration for the Eurasian Customs Union market (Russia, Kazakhstan, Belarus)

22. Other Fulfilled Standards

RoHS Directive

REACH Directive

IEC/EN 61558-2-16 (Annex BB)

Safety Isolating Transformer Safety Isolating Transformers corresponding to Part 2-6 of the IEC/EN 61558

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN

All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
23. PHYSICAL DIMENSIONS AND WEIGHT

<table>
<thead>
<tr>
<th>Width</th>
<th>39mm 1.54”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>124mm 4.88”</td>
</tr>
<tr>
<td>Depth</td>
<td>117mm 4.61”</td>
</tr>
</tbody>
</table>

The DIN-rail height must be added to the unit depth to calculate the total required installation depth.

<table>
<thead>
<tr>
<th>Weight</th>
<th>600g / 1.3lb</th>
</tr>
</thead>
</table>

DIN-Rail Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm.

Housing material
- Body: Aluminium alloy
- Cover: zinc-plated steel

Installation clearances See chapter 2
24. ACCESSORIES

24.1. ZM4.WALL – WALL/PANEL MOUNT BRACKET

This bracket is used to mount the devices on a wall/panel without utilizing a DIN-Rail. The bracket can be mounted without detaching the DIN-rail brackets.
24.2. ZM12.SIDE - SIDE MOUNTING BRACKET

This bracket is used to mount DIMENSION units sideways with or without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted. For sideway DIN-rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket.

![Side mounting with DIN-rail brackets](image1)
![Side mounting without DIN-rail brackets](image2)

24.3. YR40.242 – REDUNDANCY MODULE

The YR40.242 redundancy module is equipped with two input channels, which are individually decoupled by utilizing MOSFET technology. Using MOSFETs instead of diodes reduces the heat generation and the voltage drop between input and output.

The YR40.242 does not require an additional auxiliary voltage and is self-powered even in case of a short circuit across the output.

Due to the low power losses, the unit is very slender and only requires 36mm width on the DIN-rail.
25. APPLICATION NOTES

25.1. PEAK CURRENT CAPABILITY

The unit can deliver peak currents (up to several milliseconds) which are higher than the specified short term currents. This helps to start current demanding loads. Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current (including the PowerBoost). The same situation applies when starting a capacitive load.

The peak current capability also ensures the safe operation of subsequent circuit breakers of load circuits. The load branches are often individually protected with circuit breakers or fuses. In case of a short or an overload in one branch circuit, the fuse or circuit breaker need a certain amount of over-current to open in a timely manner. This avoids voltage loss in adjacent circuits.

The extra current (peak current) is supplied by the power converter and the built-in large sized output capacitors of the power supply. The capacitors get discharged during such an event, which causes a voltage dip on the output. The following examples show typical voltage dips for resistive loads:

![Fig. 25-1: 32A peak current for 50ms, typ. (2x the nominal current)](image)

![Fig. 25-2: 80A peak current for 5ms, typ. (5x the nominal current)](image)

![Fig. 25-3: 48A peak current for 12ms, typ. (3x the nominal current)](image)

Please note: The DC-OK relay triggers when the voltage dips more than 10% for longer than 1ms.

Peak current voltage dips
- Typically from 12V to 8.6V at 32A for 50ms with resistive load
- Typically from 12V to 7.4V at 80A for 2ms with resistive load
- Typically from 12V to 7.1V at 80A for 5ms with resistive load

Aug. 2017 / Rev. 1.3 DS-CP10.121-EN
All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
25.2. BACK-FEEDING LOADS

Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back-E.M.F. (Electro Magnetic Force).

This power supply is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter whether the power supply is on or off.

The maximum allowed feed-back-voltage is 25Vdc. The maximum allowed feed-back peak current is 64A. Higher currents can temporarily shut-down the output voltage. The absorbing energy can be calculated according to the built-in large sized output capacitor which is specified in chapter 6.

25.3. EXTERNAL INPUT PROTECTION

The unit is tested and approved for branch circuits up to 30A (UL) and 32A (IEC). An external protection is only required if the supplying branch has an ampacity greater than this. Check also local codes and local requirements. In some countries local regulations might apply.

If an external fuse is necessary or utilized, minimum requirements need to be considered to avoid nuisance tripping of the circuit breaker. A minimum value of 6A B- or C-Characteristic breaker should be used.

25.4. OUTPUT CIRCUIT BREAKERS

Standard miniature circuit breakers (MCB’s or UL 1077 circuit breakers) are commonly used for AC-supply systems and may also be used on 12V branches.

MCB’s are designed to protect wires and circuits. If the ampere value and the characteristics of the MCB are adapted to the wire size that is used, the wiring is considered as thermally safe regardless of whether the MCB opens or not.

To avoid voltage dips and under-voltage situations in adjacent 12V branches which are supplied by the same source, a fast (magnetic) tripping of the MCB is desired. A quick shutdown within 10ms is necessary corresponding roughly to the ride-through time of PLC’s. This requires power supplies with high current reserves and large output capacitors. Furthermore, the impedance of the faulty branch must be sufficiently small in order for the current to actually flow. The best current reserve in the power supply does not help if Ohm’s law does not permit current flow. The following table has typical test results showing which B- and C-Characteristic MCBs magnetically trip depending on the wire cross section and wire length.

Maximal wire length\(^7\) for a fast (magnetic) tripping:

<table>
<thead>
<tr>
<th>MCB Power Supply</th>
<th>(0.75\text{mm}^2)</th>
<th>(1.0\text{mm}^2)</th>
<th>(1.5\text{mm}^2)</th>
<th>(2.5\text{mm}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-2A</td>
<td>11m</td>
<td>15m</td>
<td>22m</td>
<td>35m</td>
</tr>
<tr>
<td>C-3A</td>
<td>9m</td>
<td>13m</td>
<td>18m</td>
<td>23m</td>
</tr>
<tr>
<td>C-4A</td>
<td>5m</td>
<td>8m</td>
<td>12m</td>
<td>17m</td>
</tr>
<tr>
<td>C-6A</td>
<td>-</td>
<td>1m</td>
<td>2m</td>
<td>3m</td>
</tr>
<tr>
<td>B-6A</td>
<td>6m</td>
<td>11m</td>
<td>15m</td>
<td>23m</td>
</tr>
<tr>
<td>B-10A</td>
<td>2m</td>
<td>3m</td>
<td>3m</td>
<td>4m</td>
</tr>
<tr>
<td>B-13A</td>
<td>1m</td>
<td>2m</td>
<td>3m</td>
<td>4m</td>
</tr>
</tbody>
</table>

\(^7\) Don’t forget to consider twice the distance to the load (or cable length) when calculating the total wire length (+ and – wire).
25.5. **Parallel Use to Increase Output Power**

Power supplies can be paralleled to increase the output power. The output voltage of all power supplies shall be adjusted to the same value (±100mV) with the same load conditions on all units, or the units can be left with the factory settings. There is no feature included which balances the load current between the power supplies. Usually the power supply with the higher adjusted output voltage draws current until it goes into current limitation. This means no harm to this power supply as long as the ambient temperature stays below 40°C.

If more than three units are connected in parallel, a fuse or circuit breaker with a rating of 25A or 32A is required on each output. Alternatively, a diode or redundancy module can also be utilized.

Energize all units at the same time to avoid the overload Hiccup PLUS mode. It also might be necessary to cycle the input power (turn-off for at least five seconds), if the output was in Hiccup PLUS mode due to overload or short circuits and the required output current is higher than the current of one unit.

Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Do not use power supplies in parallel in mounting orientations other than the standard mounting orientation (terminals on bottom of the unit) or in any other condition where a derating of the output current is required (e.g. altitude, ...). Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

25.6. **Parallel Use for Redundancy**

Power supplies can be paralleled for redundancy to gain higher system availability. Redundant systems require a certain amount of extra power to support the load in case one power supply unit fails. The simplest way is to put two decoupled power supplies in parallel. This is called a 1+1 redundancy. In case one power supply unit fails, the other one is automatically able to support the load current without any interruption. Redundant systems for a higher power demand are usually built in a N+1 method. E.g. five power supplies, each rated for 16A are paralleled to build a 64A redundant system. For N+1 redundancy the same rules apply as for increasing the output power, see also chapter 25.5.

Please note: Always use a redundancy module to decouple power supplies from each other. This prevents that the defective unit becomes a load for the other power supplies and the output voltage cannot be maintained any more.

Recommendations for building redundant power systems:

a) Use separate input fuses for each power supply.
b) Monitor the individual power supply units. Therefore, use the DC-OK relay contact of the CP10 power supply.
c) It is desirable to set the output voltages of all units to the same value (± 100mV) or leave it at the factory setting.

Fig. 25-5 1+1 redundant configuration with one YR40.242 redundancy module

All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.
25.7. SERIES OPERATION

Power supplies of the same type can be connected in series for higher output voltages. It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc. Voltages with a potential above 60Vdc are not SELV any more and can be dangerous. Such voltages must be installed with a protection against touching. Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Do not use power supplies in series in mounting orientations other than the standard mounting orientation (input terminals on bottom of the unit).

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

25.8. INDUCTIVE AND CAPACITIVE LOADS

The unit is designed to supply any kind of loads, including capacitive and inductive loads. If extreme large capacitors, such as EDLCs (electric double layer capacitors or “UltraCaps”) with a capacitance larger than 5F are connected to the output, the unit might charge the capacitor in the HiccupPLUS mode (see chapter 6).

25.9. CHARGING OF BATTERIES

The power supply can be used to charge lead-acid or maintenance free batteries (SLA or VRLA batteries).

Instructions for charging batteries:

a) Set output voltage (measured at no load and at the battery end of the cable) very precisely to the end-of-charge voltage.

<table>
<thead>
<tr>
<th>End-of-charge voltage</th>
<th>13.9V</th>
<th>13.75V</th>
<th>13.6V</th>
<th>13.4V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery temperature</td>
<td>10°C</td>
<td>20°C</td>
<td>30°C</td>
<td>40°C</td>
</tr>
</tbody>
</table>

b) Use a 25A circuit breaker (or blocking diode) between the power supply and the battery.

c) Ensure that the output current of the power supply is below the allowed charging current of the battery.

d) Ensure that the ambient temperature of the power supply stays below 40°C.

e) The return current to the power supply (battery discharge current) is typ. 2.6mA when the power supply is switched off (except in case a blocking diode is utilized).
25.10. Operation on Two Phases

The power supply can also be used on two-phases of a three-phase system. Such a phase-to-phase connection is allowed as long as the supplying voltage is below 240V±10%.

25.11. Use in a Tightly Sealed Enclosure

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the power supply.

The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure.

The power supply is placed in the middle of the box, no other heat producing items are inside the box.

The temperature sensor inside the box is placed in the middle of the right side of the power supply with a distance of 1cm.

<table>
<thead>
<tr>
<th>Case A</th>
<th>Case B</th>
<th>Case C</th>
<th>Case D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure size</td>
<td>110x180x165mm</td>
<td>110x180x165mm</td>
<td>180x180x165mm</td>
</tr>
<tr>
<td>Rittal Typ IP66 Box PK 9516 100, plastic</td>
<td>Rittal Typ IP66 Box PK 9516 100, plastic</td>
<td>Rittal Typ IP66 Box PK 9519 100, plastic</td>
<td>Rittal Typ IP66 Box PK 9519 100, plastic</td>
</tr>
<tr>
<td>Input voltage</td>
<td>230Vac</td>
<td>230Vac</td>
<td>230Vac</td>
</tr>
<tr>
<td>Load</td>
<td>12V, 12.8A; (=80%)</td>
<td>12V, 16A; (=100%)</td>
<td>12V, 12.8A; (=80%)</td>
</tr>
<tr>
<td>Temperature inside the box</td>
<td>47.4°C</td>
<td>56.3°C</td>
<td>46.2°C</td>
</tr>
<tr>
<td>Temperature outside the box</td>
<td>24.6°C</td>
<td>25.7°C</td>
<td>24.4°C</td>
</tr>
<tr>
<td>Temperature rise</td>
<td>22.8K</td>
<td>30.6K</td>
<td>21.8K</td>
</tr>
</tbody>
</table>
25.12. MOUNTING ORIENTATIONS

Mounting orientations other than all terminals on the bottom require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1 Recommended output current.
Curve A2 Max allowed output current (results in approximately half the lifetime expectancy of A1).

![Mounting Orientation A](standard_orientation)

![Mounting Orientation B](upside_down)

![Mounting Orientation C](table-top_mounting)

![Mounting Orientation D](horizontal CW)

![Mounting Orientation E](horizontal CCW)

All parameters are typical values specified at 230Vac, 50Hz input voltage, 12V 16A output, 25°C ambient temperature and after a 5 minutes run-in time unless otherwise noted.